Selasa, 15 Oktober 2013

KANDUNGAN, KEGUNAAN, DAN NITROGEN MENJADI TERSANGKA BARU DALAM PENCEMARAN UDARA

Nitrogen atau zat lemas adalah unsur kimia dalam tabel periodik yang memiliki lambang N dan nomor atom 7. Biasanya ditemukan sebagai gas tanpa warna, tanpa bau, tanpa rasa dan merupakan gas diatomik bukan logam yang stabil, sangat sulit bereaksi dengan unsur atau senyawa lainnya. Dinamakan zat lemas karena zat ini bersifat malas, tidak aktif bereaksi dengan unsur lainnya.
Nitrogen mengisi 78,08 persen atmosfer Bumi dan terdapat dalam banyak jaringan hidup. Zat lemas membentuk banyak senyawa penting sepertiasam aminoamoniakasam nitrat, dan sianida.
Emisi karbon dioksida, suhu global yang semakin meningkat, lapisan es yang meleleh dan perubahan iklim mewarnai pemberitaan di jagad raya ini setiap hari. Tetapi apakah perhatian kita yang berlebihan untuk karbon dioksida telah menutup mata kita terhadap ancaman yang disebabkan oleh unsur lain yang lebih berbahaya? Unsur yang dimaksud disini, yang merupakan tersangka baru pemanasan global, adalah nitrogen, dan mengabaikannya bisa mengarah pada kerugian besar bagi kesehatan manusia dan lingkungan.
Kegunaan nitrogen bagi kelangsungan hidup di alam sangat besar. Nitrogen cair banyak digunakan sebagai sumber pendingin dan dengan demikian mempunyai peranan dalam akumulator pendingin.
Nitrogen digunakan di berbagai bidang antara lain sebagai berikut:
1.     Dalam bentuk amonia nitrogen digunakan sebagai bahan pupuk, obat-obatan, asam nitrat, urea, hidrasin, amin, dan pendingin. 
2.     Asam nitrat digunakan dalam pembuatan zat pewarna dan bahan peledak. 
3.     Nitrogen sering digunakan jika diperlukan lingkungan yang inert, misalnya dalam bola lampu listrik untuk mencegah evaporasi filament. 
4.     Sedangkan nitrogen cair banyak digunakan sebagai refrigerant (pendingin) yang sangat efektif karena relatif murah. 
5.     Banyak digunakan oleh laboratorium-laboratorium medis dan laboratorium- laboratorium penelitian sebagai pengawet bahan-bahan preservatif untuk jangka waktu yang sangat lama, misalnya pada bank sperma, bank penyimpanan organ-organ tubuh manusia, bank darah, dan sebagainya, 
6.     Penyimpanan bahan-bahan yang mudah busuk: freezing, cooling, mengawetkan produk makanan dan minuman yang belum diolah pada suhu rendah, pengiriman dengan menggunakan truk pendingin. 
7.     Penyimpanan produk-produk biologi: freezing, cooling, penyimpanan bersuhu rendah untuk darah, lapisan kulit ari dan sperma untuk inseminasi buatan. 
8.     Bedah otak dan mata. 
9.     Membuat tanda pengenal pada hewan. 
10.                        Metalurgi: shrink fitting, die inerting, impact test, rolling mill. 
11.                        Pekerjaan umum: soil freezing 
12.                        Industri daur ulang: pendinginan badan mobil yang dibongkar, elektrik motor, bagian tengah kabel listrik. 
13.                        Pengerasan plastik sebelum dihancurkan atau digiling (cyro-grinding) 
14.                        Pembuatan pesawat terbang: simulasi penerbangan 
15.                        Industri nuklir: cryopumping, Penelitian ilmiah: research center Meteorologi 
16.                        Industri elektronik: packaging, moisture control 
17.                        Industri kimia: blanketing, inerting, purging, flushing.
Manfaat Nitrogen dalam Ekologi
Nitrogen sangatlah penting untuk berbagai proses kehidupan di Bumi. Nitrogen adalah komponen utama dalam semua asam amino, yang nantinya dimasukkan ke dalam protein, tahu kan kalau protein adalah zat yang sangat kita butuhkan dalam pertumbuhan. Nitrogen juga hadir di basis pembentuk asam nukleat, seperti DNA dan RNA yang nantinya membawa hereditas. Pada tumbuhan, banyak dari nitrogen digunakan dalam molekul klorofil, yang penting untuk fotosintesis dan pertumbuhan lebih lanjut. Meskipun atmosfer bumi merupakan sumber berlimpah nitrogen, sebagian besar relatif tidak dapat digunakan oleh tanaman. Pengolahan kimia atau fiksasi alami (melalui proses konversi seperti yang dilakukan bakteri rhizobium), diperlukan untuk mengkonversi gas nitrogen menjadi bentuk yang dapat digunakan oleh organisme hidup, oleh karena itu nitrogen menjadi komponen penting dari produksi pangan. Kelimpahan atau kelangkaan dari bentuk "tetap" nitrogen, (juga dikenal sebagai nitrogen reaktif), menentukan berapa banyak makanan yang dapat tumbuh pada sebidang tanah.
Fenomena alam, menyatakan bahwa atmosfir terdiri dari 79% Nitrogen (berdasarkan volume) sebagai gas padat N2. Namun meskipun demikian, penyediaan makanan untuk kehidupan manusia dan hewan-hewan lainnya lebih dibatasi oleh nitrogen daripada unsur-unsur lainnya. Sebagai gas padat, N2 tidak bereaksi dengan unsur-unsur lainnya untuk menghasilkan suatu bentuk nitrogen yang dapat digunakan oleh sebagian besar tanaman.
Peningkatan penyediaan nitrogen tanah untuk tanaman terdiri terutama dari meningkatnya jumlah pengikatan nitrogen secara biologis atau dengan penambahan pupuk baik sintetis juga non sintetis. Hal ini seolah-olah bertentangan, dimana unsur hara yang diabsorsi dari tanah dalam jumlah terbesar oleh tanaman adalah unsur hara yang sebagian besar sangat terbatas penyediaannya.
Adanya penambahan kesuburan alami dengan pupuk-pupuk komersil merupakan praktik pertanian modern. Walaupun demikian sebagian besar masyarakat modern menolak konsep komersial tersebut dengan alasan bahwa pupuk komersial mengandung bahan-bahan kimia beracun yang berbahaya bagi manusia, hewan dan lingkungan. Kenyataan bahwa nutriea itu memasuki tumbuhan dalam bentuk ion-ion, tidak perduli apakah asal pupuk itu organik atau anorganik.

Nitrogen Alam
Nitrogen adalah bagian penting dari kehidupan. Tanaman, hewan dan bakteri semuanya menggunakan nitrogen dalam satuan pembentuk fundamental yang disebut asam amino, dan asam-asam amino ini bersatu membentuk protein. Protein tidak hanya memungkinkan kita untuk tumbuh dan berfungsi dengan baik, tetapi juga membentuk basis dari hampir setiap reaksi kimia dalam tubuh mausia.
Sumber nitrogen kita yang utama adalah atmosfer, dimana nitrogen terdapat sebagai gas nitrogen (N2). Akan tetapi, dalam bentuk gas, nitrogen sangat lembam (tidak reaktif) dan hanya sedikit organisme yang mampu memanfaatkannya. Proses alami pengambilan gas nitrogen dan konversinya menjadi senyawa-senyawa yang bermanfaat dikenal sebagai fiksasi nitrogen, dan dilakukan oleh bakteri pengikat-nitrogen. Bakteri ini “mengikat” nitrogen menjadi senyawa yang mengandung nitrogen lainnya: amonia (NH3).
Amonia lebih terjangkau secara biologis dibanding gas nitrogen dan digunakan oleh bakteri penitrifikasi untuk membentuk nitrit (NO2) dan kemudian nitrat (NO3). Nitrat-nitrat ini adalah bentuk nitrogen yang bisa diolah tanaman, sehingga merupakan bentuk yang menyalurkan nitrogen ke dalam rantai makanan. Tetapi jika semua nitrogen atmosfer pada akhirnya mengakhiri perjalanan pada tanaman atau hewan, maka akan segera terjadi kekurangan. Untungnya ada bakteri denitrifikasi yang melengkapi siklus tersebut dan mengonversi nitrat kembali menjadi N2 yang lembam.
Siklus ini secara alami diregulasi oleh kecepatan dimana bakteri bisa merubah satu senyawa menjadi senyawa lainnya, dan oleh jumlah bakteri yang tersedia dalam tanah. Di masa lalu, ini menyebabkan ketersediaan nitrogen berada pada ambang batas alami untuk digunakan di biosfer setiap saat. Akan tetapi, kemajuan-kemajuan teknologi secara dramatis telah meningkatkan batas alami ini, dan konsekuensinya adalah ketidakterjangkauan nitrogen. Lalu apa yang akan terjadi?
Nitrogen diambil dari atmosfer dan dikonversi oleh bakteri menjadi senyawa-senyawa nitrogen yang bisa digunakan tanaman dan hewan.©EPA
Penyebab overdosis nitrogen
Awal mula Revolusi Industri menorehkan perubahan besar yang sangat mempengaruhi keseimbangan nitrogen. Pembakaran bahan bakar fosil besar-besaran seperti batubara dan minyak melepaskan kadar nitrogen oksida yang tinggi (termasuk oksida nitrat atau N2O) sebagai asap. Masalah nitrogen semakin parah pada Perang Dunia I dengan dikembangkannya proses Haber-Bosch, yang memungkinkan gas N2 lembam dibuat menjadi amonia tanpa menggunakan bakteri pengikat nitrogen. Amonia yang dihasilkan menjadi sumberdaya yang berharga dan bisa digunakan untuk membuat pupuk murah di perkebunan. Kontributor lain bagi kadar nitrogen yang meningkat adalah pembakaran pohon dan tanaman untuk pertanian, dan pembuatan pabrik nilon. Tetapi dengan menganggap industri dan pertanian yang sukses sebagai faktor yang sangat krusial di seluruh penjuru dunia, apakah kita benar-benar akan berhenti membuat senyawa-senyawa nitrogen bermanfaat secara buatan? Apakah kita ingin kembali ke ambang batas alami siklus nitrogen?
Mengapa kita perlu merasa khawatir?
Ada dua unsur pokok yang dipengaruhi oleh senyawa-senyawa nitrogen ini, yaitu kesehatan manusia dan lingkungan. Jika oksida nitrat (N2O) mencapai stratosfer, ia membantu merusak lapisan ozon, sehingga menghasilkan tingkat radiasi UV yang lebih tinggi dan risiko kanker kulit serta katarak yang meningkat. Ironisnya, jika N2O lebih dekat ke permukaan Bumi ia sebetulnya bisa membuat ozon, yang mana bisa menjadi kabut di siang hari yang cerah. Kabut terkait dengan masalah-masalah pernapasan, kerusakan paru-paru, risiko kanker yang meningkat dan melemahnya sistem kekebalan.
Seperti dampaknya pada ozon, nitrogen oksida terlarut dalam air atmosferik membentuk hujan asam, yang mengkorosi batuan dan barang logam dan merusak bangunan-bangunan. Pada tahun 1967, sebuah jembatan di Sungai Ohio ambruk akibat korosi hujan asam; tanaman (termasuk tanaman pangan kita) dan bahkan manusia juga berisiko. Hubungan-hubungan antara hujan asam, penyakit Alzheimer dan kerusakan otak telah diduga, serta dengan berbagai masalah pernapasan. Jadi secara keseluruhan, bukan berita baik!
Tapi masalah yang terjadi semakin luas. Penggunaan pupuk secara berlebihan di lahan dan senyawa-senyawa nitrogen dalam pakan hewan menyebabkan pelepasan nitrogen ke dalam arus air dan sungai. Alga, yang pertumbuhannya biasanya dihambat oleh ketersediaan nitrogen, menggunakan banjir nitrogen ini untuk tumbuh diluar kendali, sehingga mengarah pada kerumunan alga yang besar. Ini menggunakan semua oksigen di air dan memblokir masuknya cahaya, sehingga secara perlahan-lahan membunuh kehidupan akuatik dan mencegah tanaman-tanaman bawah laut untuk berfotosintesis. Mengkhawatirkannya, kadar nitrogen di danau-danau Norwegia telah bertambah dua kali lipat dalam sepuluh tahun terakhir, dan di Eropa barat, jumlah senyawa nitrogen yang dideposisikan lebih dari 100 kali kadar alami.
Kembali ke daratan, kadar nitrogen yang lebih tinggi dalam tanah berarti bahwa sedikit tanaman yang mampu bertahan karena tidak dapat berkompetisi. Tanaman-tanaman in cenderung adalah tanaman-tanaman yang mampu dengan cepat memanfaatkan kelebihan nitrogen untuk pertumbuhan yang cepat, sehingga menyisakan lebih sedikit sumberdaya dan lebih banyak naungan untuk spesies lain. Ini bisa menyebabkan banyak spesies tanaman yang menjadi punah, dan pada gilirannya akan memiliki efek insidental terhadap semua hewan, serangga dan burung-burung yang menggunakannya. Banyak tanah tandus kaya spesies di Belanda yang telah diambil alih oleh hutan-hutan yang kurang spesies karena alasan ini.
Terakhir, nitrogen oksida berkontribusi bagi pemanasan global. Walaupun konsentrasi oksida nitrat di atmosfer sangat rendah dibanding karbon dioksida, potensi pemanasan global oksida nitrat adalah sekitar 300 kali lebih besar. Jadi walaupun karbon dioksida menyebabkan perubahan iklim dan masalah-masalah yang terkait dengannya, senyawa-senyawa nitrogen bisa menyebabkan masalah yang lebih buruk. Senyawa-senyawa nitrogen memiliki potensi pemanasan global yang lebih besar, bisa mengarah pada masalah perubahan iklim yang lebih besar, dan menyebabkan malapetakan bagi kesehatan dan lingkungan. Jadi apa yang bisa kita lakukan?
Cara mengatasi
Saat ini, 80% senyawa nitrogen di atmosfer berasal dari sumber manusia. Masalah ini adalah produk sampingan dari masyarakat kita yang sangat tergantung pada teknologi, tetapi didalamnya terdapat solusi. Inovasi teknologi yang serupa bisa digunakan untuk mengurangi emisi, dan pengonversi katalitik bisa mengonversi nitrogen oksida menjadi gas nitrogen yang tidak berbahaya. Pemerintah juga bisa memegang peranan. Di California, ladang-ladang besar dengan lebih dari seribu ternak sapi perah sekarang ini harus meminta lisensi ke Air Resources Board, yang mengontrol kadar pelepasan dalam jumlah banyak dari hewan.
Sebenarnya ada satu solusi yang dijamin dapat mengatasi masalah nitrogen ini: mengurangi jumlah nitrogen yang kita gunakan untuk bahar bakar dalam kehidupan sehari-hari. Ini semuanya baik, tetapi seperti halnya dengan semua solusi bagi masalah-masalah besar, solusi ini juga akan sangat sangat sulit diterapkan.
Nitrogen oksida dari prosesn pembakaran dapat menyebabkan bersatunya oksigen dan nitrogen yang terdapat di udara dan hal ini memberikan berbagai ancaman berbahaya. Zat nitrogen oksida itu sendiri dapat menyebabkan kerusakan paru-paru. Setelah bereaksi di atmosfer, zat ini membentuki partikel-partikel nitrat yang sangat halus yang dapat menembus bagian terdalam paru-paru. Partikel-partikel nitrat ini jika bergabung dengan ir, baik air di paru-paru maupun uap air di atmosfer akan membentuk asam. Akhirnya zat-zat oksida ini bereaksi dengan asap bensin yang tidak terbakar dan zat-zat hidtokarbon lain untuk membentuk ozon rendah ( smog) kabut berwarna coklat kemerahan yang menyelimuti sebagian besar kota di dunia .

UNSUR NITROGEN DAN PERANANNYA TERHADAP PERTUMBUHAN TANAMAN
23 Maret 2010
Pertumbuhan, perkembangan dan produksi suatu tanaman ditentukan oleh dua faktor utama yaitu faktor genetik dan faktor lingkungan. Salah satu faktor lingkungan yang sangat menentukan lajunya pertumbuhan, perkembangan dan produksi suatu tanaman adalah tersedianya unsur-unsur hara yang cukup di dalam tanah. Dari 105 unsur yang ada di atas permukaan bumi ini, ternyata baru 16 unsur yang mutlak diperlukan oleh suatu tanaman untuk dapat menyelesaikan siklus hidupnya dengan sempurna. Ke- 16 unsur tersebut terdiri dari 9 unsur makro dan 7 unsur mikro. 9 unsur makro dan 7 unsur mikro inilah yang disebut sebagai unsur -unsur esensial.
Menurut ARNON dan STOUT ada tiga kriteria yang harus dipenuhi sehingga suatu unsur dapat disebut sebagai unsur esensial:
·         Unsur tersebut diperlukan untuk menyelesaikan satu siklus hidup tanaman secara normal (biji – — biji).
·         Unsur tersebut memegang peran yang penting dalam proses biokhemis tertentu dalam tubuh tanaman dan peranannya tidak dapat digantikan atau disubtitusi secara keseluruhan oleh unsur lain.
·         Peranan dari unsur tersebut dalam proses biokimia tanaman adalah secara langsung dan bukan secara tidak langsung.
Ketersediaan unsur-unsur esensial didalam tanah bagi tanaman sangat ditentukan oleh pH. Seperti unsur N pada pH 5.5 – 8.5, P pada pH 5.5 – 7.5 sedangkan K pada pH 5.5 – 10 sebaliknya unsur mikro relatif tersedia pada pH rendah. Pelajaran penting yang perlu kita ingat dari ketersediaan unsur esensial dalam hubungannya dengan pH yaitu bahwa untuk melakukan percobaan-percobaan lapang disarankan agar dilakukan pada area dengan pH tanah kurang lebih 7. Hal ini disebabkan karena pada pH tersebut semua unsur hara esensial baik makro maupun mikro berbeda dalam keadaan yang siap untuk diserap oleh akar tanaman sehingga dapat menjamin pertumbuhan dan produksi tanaman.
Dan untuk selanjutnya kami akan mencoba menjelaskan pengaruh daripada unsur makro dan mikro terhadap pertumbuhan dan produktivitas tanaman, terutama pengaruh unsur N terhadap pertumbuhan tanaman dan gejala dari kekurangan dan kelebihan unsur tersebut bagi tanaman.
A. NITROGEN.
Nitrogen adalah unsur kimia yang memiliki lambang N, nomor atom dari 7 dan massa atom 14,00674 u. Elemental nitrogen tidak berwarna, tidak berbau, tawar dan kebanyakan lembam diatomik gas pada kondisi standar, merupakan 78% dari volume atmosfer bumi.
Banyak senyawa penting industri, seperti amonia, asam nitrat, nitrat organik (propellants dan bahan peledak), dan sianida, mengandung nitrogen. Ikatan yang sangat kuat dalam unsur kimia nitrogen mendominasi, menyebabkan kesulitan untuk kedua organisme danindustri dalam mematahkan ikatan untuk mengubah N 2 menjadi senyawa yang berguna, tetapi melepaskan sejumlah besar energi sering berguna, ketika senyawa tersebut terbakar, meledak, atau pembusukan kembali menjadi gas nitrogen.
Unsur nitrogen ditemukan oleh dokter Skotlandia Daniel Rutherford pada tahun 1772. Nitrogen terjadi di semua organisme hidup. Ini adalah elemen konstituen asam amino dan dengan demikian protein, dan asam nukleat (DNA dan RNA). Ini terletak pada struktur kimia dari hampir semua neurotransmiter, dan merupakan komponen yang menentukan alkaloid, molekul biologis yang dihasilkan oleh banyak organisme.
B. SIKLUS NITROGEN
Siklus nitrogen merupakan salah satu siklus hara paling penting yang ada di permkaan bumi. Nitrogen digunakan oleh organisme hidup untuk menghasilkan sejumlah kompleks organik molekul seperti asam amino, protein, dan asam nukleat.
Dibawah ini adalah agen-agen yang berperan dalam siklus nitrogen.
1.     Fiksasi nitrogen oleh bakteri dapat memperbaiki atmosfer gas nitrogen (N 2) untuk amonia (NH 3) dalam reaksi pengurangan. Persamaan untuk reaksi ini adalah: N 2 + 3H 2 —-> 2NH 3 Beberapa bakteri pengikat nitrogen yang hidup bebas di tanah misalnya Azotobacter Beberapa, misalnya Rhizobium, membentuk mutualistic (simbiotik) hubungan dengan legum (kacang polong, kacang-kacangan, semanggi dll, Ini adalah anggota Papilionaceae) di mana bakteri hidup di nodul pada akar tanaman. Bakteri menyediakan tanaman dengan tetap nitrogen, tanaman memberikan bakteri dengan karbohidrat. Gambar di bawah ini menunjukkan nodul akar dalam anggota Papilionaceae
2.     Decomposer adalah bakteri dan jamur yang membusuk bangkai binatang dan tanaman dan, dalam proses mengkonversi nitrogen organik mereka (yang ditemukan dalam protein dan asam nukleat) menjadi anorganik, amonium (NH 4 +) .
3.     Bakteri nitrifikasi adalah bakteri yang interconvert molekul nitrogen anorganik: Nitrosomonas mengubah amonium (NH 4 +) ke nitrit (NO 2 -) ,Nitrobacter mengubah nitrit (NO 2 -) menjadi nitrat (NO 3 -) .Secara bersama proses-proses ini dikenal sebagai nitrification .Nitrification hanya terjadi bila kondisi tanah tidak sesuai yaitu berawa, terlalu dingin atau terlalu asam. Jika kondisi tanah yang tidak sesuai terakumulasi amonium
4.     Baktei denitrifikasi adalah bakteri yang mengubah nitrat (NO 3 -) untuk nitrit (NO 2 -) dan kemudian ke gas nitrogen (N 2) .Bakteri ini mengkonversi nitrogen anorganik ke dalam atmosfer nitrogen; suatu proses yang dikenal sebagai denitrifikasi. Contoh bakteri ini adalah Pseudomonas, Thiobacillus dll. Ini adalah denitrifikasi bakteri anaerob sehingga hanya terjadi dalam kondisi anaerob (misalnya ketika tanah berawa
5.     Fiksasi nitrogen oleh energi yang tinggi yang tersedia dari petir yang cukup untuk memperbaiki atmosfer nitrogen nitrat
6.     Haber-Bosch: ini adalah sepenuhnya proses buatan yang digunakan dalam pembuatan pupuk amonium – tetapi karena kontribusi terhadap total fiksasi nitrogen atmosfer sering termasuk
7.     Pencucian: hilangnya nitrat dari tanah sebagai akibat dari hujan lebat turun. Nitrat larut ke dalam tubuh air (misalnya danau) memperkaya mereka dan membuat mereka lebih subur. Proses ini dikenal sebagai eutrofikasi.
C. N- TERSEDIA BAGI TANAMAN.
Nitrogen yang dapat di manfaatkan oleh tanaman tinggkat tingggi khususnya tanaman budidaya dapat di bedakan atas empat kelompok utama yaitu:
1. Nitrogen nitrat (NO3-),
2. Nitrogen ammonia (NH4+),
3. Nitrogen molekuler (N2) dan
4. Nitrogen organic.
Namun tidak semua dari bentuk – bentuk nitrogen ini dapat tersedia bagi tanaman. Umumnya tanaman pertanian memanfaatkan nitrat dan ammonium kecuali pada beberapa tanaman legume yang mampu memanfaatkan N bebas melalui proses fiksasi N dengan bersimbiosis dengan bakteri Rhizobium. N organic kadang – kadang dapat dimanfaatkan oleh tanaman tinggi akan tetapi tidak mampu mencukupi kebutuhan N tanaman dan umumnya dimanfaatkan lewat daun melalui pemupukan lewat daun.
Bagi tanaman pertanian terutama manfaat N dalam bentuk ion nitra, akan tetapi dalam kondisi tertentu khususnya pada tanah – tanah masam dan kondisi an aerobic tanaman akan memanfaatkan N dalam bentuk ion ammonium (NH4+). Pada tanaman – tanaman yang tumbuh aktif dengan cepat nitrat yang terabsopsi oleh akar tanaman akan terangkut dengan cepat ke daun mengikuti alur transpirasi. Oleh karena itu metabolisme nitrat pada kebanyakan tanaman budidaya umumnya terjadi didaun walaupun metabolisme nitrogen juga terjadi pada akar tanaman.
D. PERANAN N BAGI PERTUMBUHAN TANAMAN.
Nitrogen adalah unsur yang sangat penting bagi petrumbuhan tanaman. Nitrogen merupakan bagian dari protein, bagian penting konstituen dari protoplasma, enzim, agen katalis biologis yang mempercepat proses kehidupan. Nitrogen juga hadir sebagai bagian dari nukleoprotein, asam amino, amina, asam gula, polipeptida dan senyawa organik dalam tumbuhan. Dalam rangka untuk menyiapkan makanan untuk tanaman, tanaman diperlukan klorofil, energi sinar matahari untuk membentuk karbohidrat dan lemak dari C air dan senyawa nitrogen.
Adapun peranan N yang lain bagi tanaman adalah :
·         Berperan dalam pertumbuhan vegetatif tanaman.
·         Memberikan warna pada tanaman,
·         Panjang umur tanaman
·         Penggunaan karbohidrat.
·         Dll.
E. GEJALA KEKURANGAN DAN KELEBIHAN UNSUR N TERHADAP TANAMAN.
Kekurangan salah satu atau beberapa unsur hara akan mengakibatkan pertumbuhan tanaman tidak sebagaimana mestinya yaitu ada kelainan atau penyimpangan-penyimpangan dan banyak pula tanaman yang mati muda yang sebelumnya tampak layu dan mengering.
Adapun gejala yang ditimbulkan akibat dari kekurangan dan kelebihan unsure N bagi tnaman adalah sebagai berikut :
1. Efek kekurangan unsur N bagi Tanaman.
·         Pertumbuhan kerdil,
·         Warna daun menguning,
·         Produksi menurun,
·         Fase pertumbuhan terhenti,
·         Kematian.
2. Efek dari kelebihan unsur N bagi tanaman.
·         Kualitas buah menurun.
·         Menyebabkan rasa pahit (spt pada buah timun).
·         Produksi menurun,
·         Daun lebat dan pertumbuhan vegetative yang cepat,
·         Menyebabkan keracunan pada tanaman,



Sumber :
1.http://id.wikipedia.org/wiki/Nitrogen
2.http://stroevanka.wordpress.com/2009/06/03/bahaya-nitrogen/
3.http://bibirmemble.wordpress.com/2010/03/23/unsur-nitrogen-dan-peranannya-terhadap-pertumbuhan-tanaman/
4. chem-is-try.org/nitrogen-tersangka baru dalam pencemaran udara
5.http://www.psychologymania.com/2013/05/kegunaan-nitrogen.html



Selasa, 08 Oktober 2013

rumus dan persamaan reaksi kimia


">

kandungan detergen dan bahaya detergen



Kandungan dan Bahaya Detergen
Detergen adalah campuran berbagai bahan, yang digunakan untuk membantu pembersihan dan terbuat dari bahan-bahan turunan minyak bumi. Dibanding dengan sabun, detergen mempunyai keunggulan antara lain mempunyai daya cuci yang lebih baik serta tidak terpengaruh oleh kesadahan air.

Komposisi
Pada umumnya, detergen mengandung bahan-bahan berikut:
Surfaktan
Surfaktan (surface active agent) merupakan zat aktif permukaan yang mempunyai ujung berbeda yaitu hidrofil (suka air) dan hidrofob (suka lemak). Bahan aktif ini berfungsi menurunkan tegangan permukaan air sehingga dapat melepaskan kotoran yang menempel pada permukaan bahan. Secara garis besar, terdapat empat kategori surfaktan yaitu:
a. Anionik :
-Alkyl Benzene Sulfonate (ABS)
-Linier Alkyl Benzene Sulfonate (LAS)
-Alpha Olein Sulfonate (AOS)
b. Kationik : Garam Ammonium
c. Non ionik : Nonyl phenol polyethoxyle
d. Amphoterik : Acyl Ethylenediamines
Builder
Builder (pembentuk) berfungsi meningkatkan efisiensi pencuci dari surfaktan dengan cara menon-aktifkan mineral penyebab kesadahan air.
a. Fosfat : Sodium Tri Poly Phosphate (STPP)
b. Asetat :
- Nitril Tri Acetate (NTA)
- Ethylene Diamine Tetra Acetate (EDTA)
Filler
Filler (pengisi) adalah bahan tambahan deterjen yang tidak mempunyai kemampuan meningkatkan daya cuci, tetapi menambah kuantitas. Contoh Sodium sulfat.
Aditif
Aditif adalah bahan suplemen / tambahan untuk membuat produk lebih menarik, misalnya pewangi, pelarut, pemutih, pewarna dst, tidak berhubungan langsung dengan daya cuci deterjen. Additives ditambahkan lebih untuk maksud komersialisasi produk. Contoh : Enzim, Boraks, Sodium klorida, Carboxy Methyl Cellulose (CMC).

Pencemaran Alam Sekitar oleh Detergen dan Bahan Tambahan dalam Detergen
1.     Detergen yang berantai lurus tidak terbiodegradasikan, yaitu tidak terurai oleh bakteria atau mikroorganisma.
2.     Apabila air cucian yang mengandungi detergen dibuang ke dalam talian air atau ke dalam sungai, pencemaran air berlaku dan hidupan akuatik akan mati.
3.     Apabila sebatian fosfat yang ditambahkan kepada detergen dibuang ke dalam sungai atau tasik akan berlaku pertumbuhan rumpai air dan alga yang sangat cepat. Hal ini akan menyebabkan kandungan oksigen terlarut di dalam air sangat berkurangan dan hidupan akuatik akan mati.
Kegunaan :
Pembersih pakaian adalah salah satu kegunaan dari detergen

Bahaya Detergen
Tanpa mengurangi makna manfaat Detergen dalam memenuhi kebutuhan sehari-hari, harus diakui bahwa bahan kimia yang digunakan pada Detergen dapat menimbulkan dampak negatif baik terhadap kesehatan maupun lingkungan. Dua bahan terpenting dari pembentuk Detergen yakni surfaktan dan builders, diidentifikasi mempunyai pengaruh langsung dan tidak langsung terhadap manusia dan lingkungannya.
Surfaktan dapat menyebabkan permukaan kulit kasar, hilangnya kelembaban alami yang ada pada permukan kulit dan meningkatkan permeabilitas permukaan luar. Hasil pengujian memperlihatkan bahwa kulit manusia hanya mampu memiliki toleransi kontak dengan bahan kimia dengan kandungan 1 % LAS dan AOS dengan akibat iritasi ‘sedang’ pada kulit. Surfaktan kationik bersifat toksik jika tertelan dibandingkan dengan surfaktan anionik dan non-ionik. Sisa bahan surfaktan yang terdapat dalam Detergen dapat membentuk chlorbenzene pada proses klorinisasi pengolahan air minum PDAM. Chlorbenzene merupakan senyawa kimia yang bersifat racun dan berbahaya bagi kesehatan. Pada awalnya surfaktan jenis ABS banyak digunakan oleh industri Detergen. Namun karena ditemukan bukti-bukti bahwa ABS mempunyai risiko tinggi terhadap lingkungan, bahan ini sekarang telah digantikan dengan bahan lain yaitu LAS.
Builders, salah satu yang paling banyak dimanfaatkan di dalam Detergen adalah phosphate. Phosphate memegang peranan penting dalam produk Detergen, sebagai softener air. Bahan ini mampu menurunkan kesadahan air dengan cara mengikat ion kalsium dan magnesium. Berkat aksi softenernya, efektivitas dari daya cuci Detergen meningkat. Phosphate yang biasa dijumpai pada umumnya berbentuk Sodium Tri Poly Phosphate (STPP). Phosphate tidak memiliki daya racun, bahkan sebaliknya merupakan salah satu nutrisi penting yang dibutuhkan mahluk hidup. Tetapi dalam jumlah yang terlalu banyak, phosphate dapat menyebabkan pengkayaan unsur hara (eutrofikasi) yang berlebihan di badan air, sehingga badan air kekurangan oksigen akibat dari pertumbuhan algae (phytoplankton) yang berlebihan yang merupakan makanan bakteri. Populasi bakteri yang berlebihan akan menggunakan oksigen yang terdapat dalam air sampai suatu saat terjadi kekurangan oksigen di badan air dan pada akhirnya justru membahayakan kehidupan mahluk air dan sekitarnya. Di beberapa negara, penggunaan phosphate dalam Detergen telah dilarang. Sebagai alternatif, telah dikembangkan penggunaan zeolite dan citrate sebagai builder dalam Detergen.
Detergen yang selama ini kita gunakan untuk mencuci pakaian sebenarnya merupakan hasil sampingan dari proses penyulingan minyak bumi yang diberi berbagai tambahan bahan kimia seperti fosfat, silikat, bahan pewarna, dan bahan pewangi. Generasi awal Detergen pertama kali muncul dan mulai diperkenalkan ke masyarakat sekitar tahun 1960-an dengan menggunakan bahan kimia pengaktif permukaan (surfaktan) Alkyl Benzene Sulfonat (ABS) sebagai penghasil busa.(Wikipedia, 2009).
Polusi atau pencemaran adalah keadaan dimana suatu lingkungan sudah tidak alami lagi karena telah tercemar oleh polutan. Misalnya air sungai yang tidak tercemar airnya masih murni dan alami, tidak ada zat-zat kimia yang berbahaya, sedangkan air sungai yang telah tercemar oleh detergen misalnya, mengandung zat kimia yang berbahaya, baik bagi organisme yang hidup di sungai tersebut maupun bagi makhluk hidup lain yang tinggal di sekitar sungai tersebut.
Polutan adalah zat atau substansi yang mencemari lingkungan. Air limbah detergen termasuk polutan karena didalamnya terdapat zat yang disebut ABS. Jenis Detergen yang banyak digunakan di rumah tangga sebagai bahan pencuci pakaian adalah Detergen anti noda. Detergen jenis ini mengandung ABS (alkyl benzene sulphonate) yang merupakan Detergen tergolong keras. Detergen tersebut sukar dirusak oleh mikroorganisme (nonbiodegradable) sehingga dapat menimbulkan pencemaran lingkungan (Rubiatadji, 1993). Lingkungan perairan yang tercemar limbah Detergen kategori keras ini dalam konsentrasi tinggi akan mengancam dan membahayakan kehidupan biota air dan manusia yang mengkonsumsi biota tersebut.
Awalnya inovasi yang dianggap cemerlang ini ini mendapatkan respon yang menggembirakan. Namun seiring berjalannya waktu, ABS setelah diteliti lebih lanjut diketahui mempunyai efek destruktif (buruk) terhadap lingkungan yakni sulit diuraikan oleh mikroorganisme. Hal ini menjadikan sisa limbah Detergen yang dikeluarkan setiap hari oleh rumah tangga akan menjadi limbah berbahaya dan mengancam stabilitas lingkungan hidup kita.Beberapa negara di dunia secara resmi telah melarang penggunaan zat ABS ini dalam pembuatan Detergen dan memperkenalkan senyawa kimia baru yang disebut Linier Alkyl Sulfonat, atau lebih sering jika kita lihat di berbagai label produk Detergen yang kita pakai dengan nama LAS yang relatif lebih ramah lingkungan. Akan tetapi penelitian terbaru oleh para ahli menyebutkan bahwa senyawa ini juga menimbulkan kerugian yang tidak sedikit terhadap lingkungan. Menurut data yang diperoleh bahwa dikatakan alam lingkungan kita membutuhkan waktu selama 90 hari untuk mengurai LAS dan hanya 50% dari keseluruhan yang dapat diurai.
Efek paling nyata yang disebabkan oleh limbah Detergen rumah tangga adalah terjadinya eutrofikasi (pesatnya pertumbuhan ganggang dan enceng gondok). Limbah Detergen yang dibuang ke kolam ataupun rawa akan memicu ledakan pertumbuhan ganggang dan enceng gondok sehingga dasar air tidak mampu ditembus oleh sinar matahari, kadar oksigen berkurang secara drastis, kehidupan biota air mengalami degradasi, dan unsur hara meningkat sangat pesat. Jika hal seperti ini tidak segera diatasi, ekosistem akan terganggu dan berakibat merugikan manusia itu sendiri, sebagai contoh saja lingkungan tempat pembuangan saluran selokan. Secara tidak langsung rumah tangga pasti membuang limbah Detergennya melalui saluran selokan ini, dan coba kita lihat, di penghujung saluran selokan begitu banyak eceng gondok yang hidup dengan kepadatan populasi yang sangat besar.
Selain merusak lingkungan alam, efek buruk Detergen yang dirasakan tentu tak lepas dari para konsumennya. Dampaknya juga dapat mengakibatkan gangguan pada lingkungan kesehatan manusia. Saat seusai kita mencuci baju, kulit tangan kita terasa kering, panas, melepuh, retak-retak, gampang mengelupas hingga mengakibatkan gatal dan kadang menjadi alergi.
Detergen sangat berbahaya bagi lingkungan karena dari beberapa kajian menyebutkan bahwa Detergen memiliki kemampuan untuk melarutkan bahan bersifat karsinogen, misalnya 3,4 Benzonpyrene, selain gangguan terhadap masalah kesehatan, kandungan detergen dalam air minum akan menimbulkan bau dan rasa tidak enak. Sedangkan tinja merupakan jenis vektor pembawa berbagai macam penyakit bagi manusia. Bagian yang paling berbahaya dari limbah domestik adalah mikroorganisme patogen yang terkandung dalam tinja, karena dapat menularkan beragam penyakit bila masuk tubuh manusia, dalam 1 gram tinja mengandung 1 milyar partikel virus infektif, yang mampu bertahan hidup selama beberapa minggu pada suhu dibawah 10 derajat Celcius.
Dalam jangka panjang, air minum yang telah terkontaminasi limbah Detergen berpotensi sebagai salah satu penyebab penyakit kanker (karsinogenik). Proses penguraian Detergen akan menghasilkan sisa benzena yang apabila bereaksi dengan klor akan membentuk senyawa klorobenzena yang sangat berbahaya. Kontak benzena dan klor sangat mungkin terjadi pada pengolahan air minum, mengingat digunakannya kaporit (dimana di dalamnya terkandung klor) sebagai pembunuh kuman pada proses klorinasi.
Pada percobaan tersebut dapat dianalisa bahwa Detergen itu memang mempunyai dampak buruk terhadap berbagai lingkungan kehidupan kita. Baik itu lingkungan terrestrial dimana kita hidup, kemudian lingkungan perairan termasuk organisme yang hidup di dalamnya, atau bahkan juga lingkungan kesehatan manusia sendiri yang sebenarnya tanpa kita sadari mulai perlahan-lahan menyerang kesehatan kita.
Detergen fosfat tinggi seperti tri-natrium fosfat (TSP) dapat dibeli di beberapa toko cat dan perangkat keras. Pembersihan secara teratur dengan Detergen fosfat tinggi telah terbukti efektif dalam mengurangi debu di yang terdapat di jendela dan di sekitar pintu.Apa yang terjadi jika limbah Detergent bercampur dengan air?Detergent memiliki efek beracun dalam air. Semua Detergent menghancurkan lapisan eksternal lendir yang melindungi ikan dari bakteri dan parasit, selain itu detergent dapat menyebabkan kerusakan pada insang. Kebanyakan ikan akan mati bila konsentrasi Detergent 15 bagian per juta. Detergent dengan konsentrasi rendah pun sebanyak 5 ppm tetap dapat membunuh telur ikan. Surfaktan Detergen pun tak kalah berbahaya karena jenis detergent ini terbukti mengurangi kemampuan perkembangbiakan organisme perairan.
Detergen juga memiliki andil besar dalam menurunkan kualitas air. Bahan kimia organik seperti pestisida dan fenol akan mudah diserap oleh ikan, dengan konsentrasi Detergen hanya 2 ppm dapat diserap ikan dua kali lipat dari jumlah bahan kimia lainnya.Detergent juga memberi efek negatif bagi biota air. Fosfat dalam Detergen dapat memicu ganggang air tawar bunga untuk melepaskan racun dan menguras oksigen di perairan. Ketika ganggang membusuk, mereka menggunakan oksigen yang tersedia untuk mempertahankan hidupnya.
Dalam sebuah literatur disebutkan, ada fakta yang menarik seputar air di bumi ini. Jumlah total air di bumi saat ini relatif sama dengan jumlah total air tercipta. Yaitu 70 persen permukaan bumi kita adalah air. Komposisinya adalah 67 persen terdiri dari air asin dan tiga persen air tawar. Prosentasi air tawar itu terdiri dari es, air tanah, air permukaan, dan uap air. Jumlah airnya saat ini memang sama akan tetapi yang berubah bentuknya. Tidak semua air tawar tersebut dapat di pakai, penyebabnya adalah pencemaran lingkungan yang dibuat oleh manusia sendiri seperti limbah dari pemakaian detergen.
Kandungan detergen

Deterjen
Deterjen umumnya mengandung bahan-bahan yang apatdikelompokkan menjadi “surface-active agenrs” atau surfaktanbuilders atau zat pembangun dan “additive substances” atau bahantambahan (Connel dan Miller, 1995). Kandungan surfaktan di dalamdeterjen adalah sebesar 15-25%. Surfaktan merupakan suatu bahanyang dapat menyebabkan turunnya tegangan permukaan cairan(Connel dan Miller, 1995). Karena sifatnya yang dapat menurunkantegangan permukaan cairan terutama air, sehingga memungkinkanpartikel pada bahan-bahan yang dicuci terlepas dan mengapung atauterlarut dalam air (Effendi, 2000).Selain sebagai bahan pembersih, surfaktan juga berfungsisebagai bahan pengemulsi, demulsi, pengahsil busa dan buih,germisida, bahan pembasah dan pencelup serta banyak aplikasi lain(Kline, 1991). Zat pembangun sebagian besar berupa garam inorganicatau katalis yaitu fosfat dan sodium tripolifosfat yang berfungsi untukmengefektifkan daya kerja surfaktan, sedangkan bahan tambahanberupa silikat, sodium sulfat, sodium perborat dan enzim (Schwartz,1972
Dalam Hanafi, 1988).

Surfaktan mempunyai sifat yang tergantung pada suatumolekul yang memiliki sifat lipofilik dan hidrofilik pada batas antarfase (misalnya lemak dan air atau udara dan air), molekul surfaktanbergabung menyebabkan turunnya tegangan permukaan. Pada batasantar fase ini, keberadaan busa menyebabkan terbentuknya perluasandaerah antara fase dan dengan demikian akumulasi surfaktan dalam air busa dan akibatnya, terjadi penurunan kepekatan surfaktan dalammasa air. Pengaruh ini dapat menyebabkan perbedaan dalam kepekatan surfaktan dan dalam tingkatan beberapa ribu kali (Prat danGirauud, 1961

dalam
Connel dan Miller, 1995).
2.      Detergen
Kebanyakan ibu rumah tangga menggunakan detergen dalam mencuci pakaian dibandingkan dengan sabun.detrgen mempunyai keunggulan daya cuci yang lebih baik serta tidak terpengaruh oleh kesadahan air. Gliserin yang mengikat kotoran sehingga pakaian menjadi bersih. Jenis-jenis detergen yaitu deterjen cair, detergen krim, dan detergen bubuk.

Bahan-bahan yang terkandung dalam detergen, secara umum sebagi berikut:
1.      Surfaktan
Bahwa bahan utama dari semua sabun adalah surfaktan, begitu juga dengan detergen. Bahan kimia yang digunakan dapat berupa sodium lauryl  sulfonat. sodium lauryl  sulfonate memiliki beberapa nama dagang yaitu nama texapone, emal, luthensol, dan neopelex. Secara  fungsional bahan ini berfungsi dalam meningkatkan tingkat kebersihan. Cirri dari bahan aktif ini mempunyai busa banyak danbentuknya gel ( pasta ).
Secara garis besar, terdapat empat ketegori surfaktan yaitu :
a.      Anionik
Ø  Alkyl Benzene Sulfonate ( ABS )
Ø  Linear Alkyl Benzene Sulfonate ( LAS )
Ø  Alpha Olein Sulfonate ( AOS )
b.       Kationik  : garam ammonium
c.      Non ionic : Nonyl Phenol Polyethoxyle
d.     Amhoterik : Achyl Ethylenediamines
Fungsi surfaktan anionik adalah sebagai zat pembasah yang akan menyusup ke dalam ikatan antara kotoran dan serat kain. Hal ini akan membuat kotoran menggulung, lama kelaman menjadi besar, kemudian lepas ke dalam air cucian dalam bentuk butiran. Agar butiran ini tidak pecah kembali dan menempel di kain, perlu ditambahkan jenis surfaktan lain yang akan membungkus butiran tersebut dan membuatnya tolak menolak dengan air, sehingga posisinya mengambang. Ini untuk memudahkannya terbuang bersama air cucian.
2.      Pembentukan ( builder )
builder berfungsi meningkatkan efisiensi pencucidari surfaktan dengan cara menon-aktifkan mineral penyebab kesadahan air. Berikut beberapa builder:
a.      Fosfat : Sodium Tri Poly Phosphate ( STTP )
b.       Asetat : Nitril Tri Acetate ( NTA ), Ethylene Diamine Tetra Acetate ( EDTA )
c.       Silikat : Zeolit
d.      Sitrat : asam Sitrat
3.      Pengisi ( Filter )
Filter  adalah bahan tambahan detergen yang tidak mempunyai kemampuan meningkatkan daya cuci, tetapi ,menambah kuantitas. Bahan pengisi menetralisir kesadahan air atau melunakkan air, mencagah menempelnya kembali kotoran pada bahan yang dicuci dan mencegah terbentuknya gumpalan dalam air cucian.

Sumber :
1.http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=7&ved=0CGUQFjAG&url=http%3A%2F%2Fpunyanyavika.wordpress.com%2F2011%2F12%2F25%2Fdampak-penggunaan-detergen-sebagai-pembersih-pakaian-dalam-kehidupan%2F&ei=sPNTUqO6NceOrQet94GIDw&usg=AFQjCNH5I-jAXoOK4Usae0V_Qpj8zw86AA&sig2=Gde3GYYATb8G9VfN66Kn9w&bvm=bv.53760139,d.bmk&cad=rja
2.wikipedia-kandungan detergen
3.http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CEIQFjAC&url=http%3A%2F%2Fplatika-vet.blogspot.com%2F2011%2F06%2Fpencemaran-limbah-detergent.html&ei=sPNTUqO6NceOrQet94GIDw&usg=AFQjCNF2G52IkiPlylTmPPtccGrqqKFVFA&sig2=wjUwUztS3drg_zCNtR9VmA&bvm=bv.53760139,d.bmk&cad=rja
4.http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CDkQFjAB&url=http%3A%2F%2Fbiologiarchiever.blogspot.com%2F2011%2F04%2Fkandungan-detergen.html&ei=sPNTUqO6NceOrQet94GIDw&usg=AFQjCNEf5HtDfEkapbaKOQqA_Y5XxVR1pQ&sig2=BmgeZFlhkD7SzoYSwLwtjQ&bvm=bv.53760139,d.bmk&cad=rja
5.http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&ved=0CF0QFjAF&url=http%3A%2F%2Fsariberbagiilmu.blogspot.com%2F2011%2F05%2Fbahan-kimia.html&ei=sPNTUqO6NceOrQet94GIDw&usg=AFQjCNE3KhhnnhWcgF3ef7227nqta8bBWw&sig2=XW0aGRIUNsayYp7Vto4vjQ&bvm=bv.53760139,d.bmk&cad=rja